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1. Introduction. In this paper we demonstrate the existence of quadrature for- 
mulas of the following types. For k an odd positive integer, 

(1) If(x)dx=2 k)() f(k)( xPl + Rm(k f)i 
i-i i-O~1. (2i + 1):. ,=1 

For k an even positive integer, 
(2) (k-2)/2 f(2i) (0) m 

f'fE (dx=2 I)I + E a, Vk)() +fk)( )] + Rm.k(f) 
1 i-.O ~~~(2 i + 1)T! iEl 

Each of formulas (1) and (2) will be shown to exist so that they are exact for 
polynomials of degree at most 4m + k for odd k, and 4m + k - 1 for even k. 

It is possible to use tables published by Hammer, Marlowe, and Stroud [2] and 
extended by Fishman (1] to obtain formulas of the form 

1 m 
(3) I f(x) dx = f(1) + E ajf'(xi) + Rm(f) 

jow 

and likewise formulas using higher derivatives. These formulas are asymmetrical 
and for some uses would be more appropriate than formula (1) or (2). 

It is considered that formula (1), (2), or (3) may be useful when the integrand 
function is represented as a variable integral for which derivatives may be easier 
to compute than the integrand function itself. It is also anticipated that these 
formulas may be used in the numerical solution of differential equations. 

Kopal [3] has devised formulas using the first derivative values. His approach 
leaves difficulties in establishing existence and reality of evaluation points and 
in some cases he has computed more than one formula of the same degree. The 
method we propose has direct connection with the established theory of orthog- 
onal polynomials which gives the existence, reality, and distinctness of the evalua- 
tion points and the positiveness of the weights as . A linear transformation to give 
integration limits -h, h in formula (1) or (2) results in multiplying each deriva- 
tive of order n by hn+l. 

We have not identified the orthogonal polynomial systems with any treated 
in detail in the literature. However, tables of the aj and xi for k = 1, 2, m = 1 
(1) 10, and k = 3, 4, m = 1 (1) 9, have been computed by G. W. Struble in 
[5], where tables for the Aum) of the remainder terms are also to be found. For 
purposes of computation we give a standard type recursion formula permitting 
generation of each polynomial in a sequence from its two predecessors. 

Throughout the paper we assume that the integrand function has all-order 
derivatives appearing and that these are continuous. 
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2. Reduction of the Problems. It is well known and readily established that 
,1 /x n 1I 1 

(4) I (4) g(x)(dx)'+' = (1 -x)'g(x) dx, 

where (f)n g(x) (dx) denotes the result of integrating g(x) successively n 

times over (0, x). Now our formulas (1) and (2), by choice of form, will hold for 
every odd integrand function f(x) and hence we write f(x) = fo(x) + fi(x), where 

fo x) = ff ) + f( -x) andf1(x) = f(x) -f ( -x) 2 2 

The functions fo and fi may be called the even and odd components of f, respectively. 
We now observe 

(5) f(x) dx = 2 ffo(x) dx andfo(k)(x) f(k)(x) + (-1)kf(k)(_X) 

iIoreover, 

fo ) dx = (j) fo(k) (X) (dX)k+1 + Sk(f), where 

6(k-1)/2 (20) f ox 

(Sk(f) = E0 (2i+ 1)!' forkod 
(k-2) /2 f (2i() for even. 

I 0(2i +1) ' 

Hence our formulas (1) and (2) may be written, using formulas (4), (5), and (6), 
and dropping 2S8k(f) from each side, as follows: 

(7) }!t (1 - x)fo(k) (x) dx = 2 E ajfo(k)(xj) + Rm,k(f). 

Now we only need derive formulas (7) exact for even-degree polynomials replacing 
fo(x). Then, if k is odd we have with u = x2 

2 if (1 - x)*rp(X2) dx = h f (1 - u)P(u) du 
m 

= 2 E aj Vuj P(uj), and thus, 
ji- 

(8) k!kJ (1-V)P(it) d = bi P(uj), where b, = 2aj /uj. 

On the other hand, if k is even, so that f (k) (X) is replaced by an even polynomial 
P(x2), then we have with it = 2x bj = 2aj, 

h f' (1- A P(u) dit = E bi P(uj). 
_- /ll jel1 

Now formulas (8) and (9) are in standard form to apply the theory of or- 
thogonal polynomials. The weight functions are positive-valued and appropriate. 
Hence there exists a sequence {Pm ,k. (t) of orthogonal polynomials for each k = 1, 
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22 , the zeros of which are the squares of the proposed evaluation points xi, 
and positive numbers bj from which the aj are determined. The zeros are real, 
distinct, and in the interval. 

The weight functions are simple in form but we have been unable to find refer- 
ences in which this class has been treated. For k = 1 we have verified that the 
system of polynomials is not a classical one since { Pm,,(u)I is not orthogonal. For 
purposes of calculating formulas, however, we state in the next section recursion 
formulas which permit sequential generation of the polynomials for each k ? 1. 

3. Recursion Formula for Polynomials. The recursion formula stated here is of 
the standard sort, but its form is preferable to the one given by Szeg6 [4], p. 41, 
since it involves only the coefficients of Pn,- and Pn-2 to calculate the multipliers 
B,, and Cn. This is important when explicit formulas for the multipliers have not 
been determined. We assume {Pn(u )) is a system of polynomials with leading 
coefficient 1, orthogonal over the interval [a, b] with respect to the weight function 
w(u). Then we have 

(10) Pn(u) = (u + B,)Pnil(u) - CnP.-2(U). n > 2 

If we define 

(11 ) y(k) = fb W(U)U Pn(u) du 

we may observe .n (k) 0, 0 :5 k < n, and 
b rb 

A(n) = 1 w(u)uP,,(u) du = L w(U)(Pn(u1))2du. 

We also define cn.L) as the coefficient of ui in P,,-4(u). Then Bn and Cn are given 
by 

(n) 

(12) Bn = n + (n-1) fl \,n-I 
(Jn-1 

(nn1I ( n-1) 
(13) Cn (n-2) 

An-2 

For our particular problem, the An-22, MAn-1, and A4n-1 are linear combinations of 
the coefficients of Pn-2 and Pn-1 with rational multipliers and the coefficients of 
every Pn are rational. Hence, in the absence of better formulas, starting with Pj 
and Pi, we can generate the remaining polynomials, in principle. In practice, of 
course, the coefficients grow very rapidly in exact rational form. 

Now PO,k = 1 for every k, and, for degree one, IPlk(U)j is given by 

(14) Plin-1(U) U U- (2n + 3)(n + 1) 
' 

and 

(15) P1,2n (U) = U - (2n + 3)(n + 1) ' = 1,2,3, 

Hence, with the recursion formula (10), successive higher-degree polynomials may 
be calculated. 
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The orthonormal sequence jQn(u)j is determined by 

(16) Pn(u) = V/Is"n Qn(u)- 

4. Remainders for the Integration Formulas. In this section we give the re- 
mainder formulas. We will give the explicit functions to which Rolle's Theorem 
may be applied. The method is a variation of Markoff's for Hermite (osculating) 
interpolation (Szeg6 [4], p. 369.) As usual, we obtain the highest-degree poly- 
nomial H(x) for which the formula is exact and which agrees with the integrand 
function or its derivatives at all evaluation points. Then we estimate 

f k)(X) -H (k) (x) 

and fk) (x) -HI o)(x), and use formula (7) to find Rm. k(f). (Here Ho is the even 
component of H.) 

For k odd and 2m + 1 evaluation points 0, -xl, .-4 , ,x we require 

H (0) = f(O) I H(n) (0) = P~n) (0) 

for n = 1, *** , k, II (k)(_Xj) = fly)( -4 xi) H(k+l) ( .xj) = f(k+l) ( _x_) j = 1, 

* * , m. Then 1I(x) is a polynomial of degree at most 4m + k. Let Pm(X2) be the 
polynomial PIk(u) determining the evaluation points x, by Pm(xj2) = 0, j = 1, 

m. Then let x be any number which is none of 0, 4xi. Define 

(17) F(z) f (k)(z) - HI k)(z) - 
f 

)(x) - H (k)(x) Z [p(z2)]2. 
X[P.(x 2)]2 

Then F(z) vanishes at x, 0, +xj(2m + 2 distinct points). Also, F'(z) vanishes at 

-xj and 2m + I other distinct points, or 4m + 1 points. Hence, applying Rolle's 
Theorem there exists a 4j such that F(4m+l)(6) = 0, and thus 

( 18) f~k)() k H(k)(X) f(4m+k+l) (%)x [Pm(X2)]2 (18) 01) H 
~~~~(4m + 1)! 

From equation (18) applied to x and -x, and from the continuity of f(4m+k+l) (x), 
it follows that the even components satisfy 

(19) fo(k)(x) - HO(k)(x) =f 

4 
)X[Pm(X2)12 (19) 

~~~~~~~(4m + 1)! 

Hence, from equation (7) by the continuity of f(4m+k+l) (x) and the first theorem 
of the mean for integrals, we have, with u = x2, and for some 7i7-1, 11, 

(20) Rmk() = f + v" ) [Pm(U)]2 du, for k odd, 

or replacing the integral by ,uAm, 
(4m+k+l) (in 

(21) Rmk(f) for k odd= 
(4rn + 1) ! Lnk, frod 

For k even, we require H(x), of at most degree 4m + k- 1, such that 

H(0) = f(0) HYn'(0) = f(O 

for n =k1 - 1, H(k)(rXj) = f(k)(?xi) H R+l)(_Xj) = f(k+l)(_xj), for 
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for j = 1, * , m. Then, for x not equal to one of ix,, we define 

(22) F(z) = f(k)(Z) - H(k)(Z) --f( H (X) [Pm(Z2)12. 
[Pm(X2)12 

Now F'(z) vanishes at 4m distinct points, and there exists a {l such that 

F( ')(4) = 0, 
which implies 

(23) f (k) () - H(k)(X) f(4 -+k) (%) [Pm(X2)12 
(4m)! 

The even components fo and Ho then satisfy 

(24) fo(k)(x) - H (k)(x) =f (4m+k)(6)[P(X2)1] (24) 0 _ HOW (X) = 
~~(4m)! 

using the same argument used in the passage from (18) to (19). Then, as before, 
substitution in equation (7) gives, with u = x2, and for some et- 1, 11 

(25) Rmk(f) f(4m+k) (v) f1 ( 1 - /U)k [pm(U)I2 du, for k even, 
- (4m)!Jo 1c-/ 

(in) 

or, with the integral replaced by m,)k 

f(4m+k)() (i) 

(26) Rmk(f) = (4k) Mi for k even. 

The number IA(M) may be determined simply in the low-degree cases by sub- 
stituting in the numerical formula integrands x4i+k~t if k is odd, and x4m+I if k is 
even. 

It may be noted that our explicit choice of H is made for convenience in each 
case. That is, formulas (1) and (2) hold with f = H and Rmik = 0, and H is a 
highest-degree polynomial for which this is true-i.e., no higher even power of x 
may be included. Moreover, in formula (6) we have 

(27) f Ho(x) dx = () Ho(k) (x) (dx)k+l + Sk(f) 

since f(J) (0) = H' (0)), for appropriate values of j. Numerical tables of a,, x, and 
the constant in the remainder have been calculated by G. W. Struble [51 for small 
values of k. 
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